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Abstract
The parentage between Weyl pairs, the generalized Pauli group and the
unitary group is investigated in detail. We start from an abstract definition
of the Heisenberg–Weyl group on the field R and then switch to the discrete
Heisenberg–Weyl group or generalized Pauli group on a finite ring Zd . The
main characteristics of the latter group, an abstract group of order d3 noted
Pd , are given (conjugacy classes and irreducible representation classes or
equivalently Lie algebra of dimension d3 associated with Pd ). Leaving the
abstract sector, a set of Weyl pairs in dimension d is derived from a polar
decomposition of SU(2) closely connected to angular momentum theory.
Then, a realization of the generalized Pauli group Pd and the construction
of generalized Pauli matrices in dimension d are revisited in terms of Weyl
pairs. Finally, the Lie algebra of the unitary group U(d) is obtained as a
subalgebra of the Lie algebra associated with Pd . This leads to a development
of the Lie algebra of U(d) in a basis consisting of d2 generalized Pauli matrices.
In the case where d is a power of a prime integer, the Lie algebra of SU(d) can
be decomposed into d − 1 Cartan subalgebras.

PACS numbers: 03.65.Fd, 03.65.Ta, 03.65.Ud

1. Introduction

The present paper is devoted to three major ingredients of quantum mechanics, namely the
Heisenberg–Weyl group connected with Heisenberg commutation relations [1], the Pauli spin
matrices [2] used in generalized angular momentum theory and the theory of unitary groups,
and the pairs of Weyl [3] of relevance in finite quantum mechanics.

The Heisenberg–Weyl (or Weyl–Heisenberg or Heisenberg) group HW(R), also called
the Weyl group [4], is of central importance for the quantization process and its Lie algebra

* Dedicated to the memory of my teacher and friend Moshé Flato on the occasion of the tenth anniversary of his
death.
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turns out to be a basic building unit for quantum mechanics [5]. Note that the Lie algebra
of HW(R) should not be confused with the Weyl–Heisenberg algebra (or oscillator algebra
spanned by the creation, annihilation and number operators) and its supersymmetric extensions
Wk [6].

A discrete restriction HW(Zd) of HW(R), corresponding to the replacement of the
infinite field R by a finite ring Zd ≡ Z/dZ, yields a group of order d3 (d arbitrary in N\{0, 1}).
This group was introduced by Šťovı́ček and Tolar [7] in connection with quantum mechanics
in a discrete spacetime, by Balian and Itzykson in connection with finite quantum mechanics
[8], and by Patera and Zassenhaus [9] in connection with gradings of simple Lie algebras of
type An−1. The case where the ring Zd is replaced by a finite (Galois) field Fq gave rise to
several mathematical studies [10, 11]. The discrete Heisenberg–Weyl group, also known as
the generalized Pauli group, plays a central role in quantum information, cf the interest of
Galois fields in finite quantum mechanics [12] and, consequently, in quantum information and
quantum computation. In this connection, a finite Heisenberg–Weyl group was used for a
description of phase oscillations of EPR states [13].

What is the relationship between the Heisenberg–Weyl group and Weyl pairs? First
of all, a definition of a Weyl pair is in order. A Weyl pair (X,Z) in d dimensions is
a pair of d-dimensional unitary matrices X and Z that satisfy the q-commutation relation
XZ−qZX = 0 and the cyclic relations Xd = Zd = I (I standing here for the unitary matrix),
where q is a primitive root of unity with qd = 1. The concept of a pair of Weyl, initially
introduced for dealing with quantum dynamical systems in finite dimension [3], was used for
the construction of unitary bases in finite-dimensional Hilbert spaces [14] and (independently)
for the factorization of the secular equation corresponding to finite-dimensional eigenvalue
problems [15]. In the last 20 years, the notion of Weyl pairs was used for the construction
of generalized Pauli matrices in domains as different as graded Lie algebras and quantum
information.

The usual Pauli matrices σx, σy and σz are useful for the representation theory of the
Lie group SU(2). Therefore, a natural extension of the Pauli matrices resulted in the 1960s
from the interest of the group SU(3) for the classification of elementary particles [16]. This
gave rise to the Gell-Mann matrices and the Okubo matrices. Further extensions of the Pauli
matrices came out of the introduction of the group SU(4) for charmed particles [17] and of the
group SU(5) for a grand unified theory of quarks and leptons [18]. The Gell-Mann lambda
matrices for SU(3) and their extension to Cartan bases for SU(d) undoubtedly constitute a
systematic extension of the ordinary Pauli matrices. This statement is particularly justified as
far as the tensor structure (involving symmetric and antisymmetric tensors) of their algebra is
concerned [19]. We shall deal in this paper with another extension of the Pauli matrices in d
dimensions which turns out to be of special interest in the case where d is a power of a prime
integer. Indeed, generalized Pauli matrices can be constructed in a systematic way by making
use of Weyl pairs. In this direction let us mention the pioneer work of Patera and Zassenhaus
[9]. In the last two decades, the construction of generalized Pauli spin matrices has been
extensively used in the theory of semi-simple Lie algebras, in quantum mechanics (complete
state determination, reconstruction of a density matrix and discrete Wigner functions), in
quantum information and quantum computation (mutually unbiased bases, unitary error bases,
quantum error correction, random unitary channels, mean king’s problem, positive operator
valued measures and quantum entanglement), and in the study of modified Bessel functions
(see for instance [8, 9, 20–32]).

From a group-theoretical point of view, the d-dimensional generalized Pauli matrices may
serve to construct a generalized Pauli group in d dimensions, a group generalizing the ordinary
Pauli group spanned by the ordinary Pauli matrices (see [7–12, 21, 24, 33–42]). In fact, this
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group is nothing but the discrete Heisenberg–Weyl group HW(Zd). This generalized Pauli
group has been recently the object of numerous studies partly in connection with the Clifford
or Jacobi group [34, 36–38] as well as graph-theoretical and finite-geometrical analyses of the
generalized Pauli operators [41, 42].

The object of this work is to further study the link between the Heisenberg–Weyl group,
the Weyl pairs, the generalized Pauli matrices and the generalized Pauli group and to revisit
their interest for unitary groups. We shall start with an abstract definition of the Heisenberg–
Weyl group, pass to an abstract version of HW(Zd) and briefly study it. Then, we shall deal
with the introduction of Weyl pairs from a polar decomposition of the Lie algebra su(2) and
we shall use them for finding a realization of HW(Zd) isomorphic to the generalized Pauli
group in d dimensions. Finally, some of the generators of the Pauli group in d dimensions
shall be used for constructing the Lie algebra su(d) of SU(d) in a basis that is especially
adapted, when d is a power of a prime integer, to a decomposition of su(d) into a direct sum
of d + 1 Cartan subalgebras.

2. The Heisenberg–Weyl group

2.1. The Lie group HW(R)

We start with an abstract definition of the Heisenberg–Weyl group HW(R). Let us consider
the set of triplets,

S := {(x, y, z) : x, y, z ∈ R}. (1)

The set S can be equipped with the internal composition law S × S → S defined trough

(x, y, z)(x ′, y ′, z′) := (x + x ′ − zy ′, y + y ′, z + z′). (2)

It is clear that the set S is a group with respect to the law (2). We denote HW(R) this group
and call it the Heisenberg–Weyl group (for evident reasons to be given below) on the infinite
field R. More precisely, we have the following result.

Proposition 1. The group HW(R) is a noncompact Lie group of order 3. This non-Abelian
group is nilpotent (hence solvable) with a nilpotency class equal to 2.

Proof. The proof is trivial. Let us simply mention that the nilpotency of HW(R) follows by
repeated use of the commutator

[(x ′, y ′, z′), (x, y, z)] = (zy ′ − yz′, 0, 0) (3)

of the elements (x ′, y ′, z′) and (x, y, z) of the group HW(R). Equation (3) shows that (x, y, z)

and (x ′, y ′, z′) commute if and only if zy ′ − yz′ = 0. �

In the terminology of Wigner [43], the group HW(R) is not ambivalent (ambivalent
means that each conjugacy class contains its inverse elements). Indeed, since

(x, y, z)−1 = (−x − yz,−y,−z) (4)

and

(x ′, y ′, z′)(x, y, z)(x ′, y ′, z′)−1 = (x + zy ′ − yz′, y, z) (5)

it is evident that only the class C(0,0,0) = {(0, 0, 0)} of the identity element (0, 0, 0) is
ambivalent.
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2.2. The Lie algebra of HW(R)

We may ask why to call HW(R) the Heisenberg–Weyl group? The following result clarifies
this point.

Proposition 2. A set of infinitesimal generators of HW(R) is

H = 1

i

∂

∂x
Q = 1

i

∂

∂y
P = 1

i

(
∂

∂z
− y

∂

∂x

)
. (6)

This set of generators satisfies the formal commutation relations,

[Q,P ]− = iH [P,H ]− = 0 [H,Q]− = 0 (7)

with H = H,Q = Q and P = P . The Lie algebra hw(R) of HW(R), with the Lie brackets
(7), is a three-dimensional nilpotent (hence solvable) Lie algebra with nilpotency class 2.

Proof. The proof easily follows by working in a neighbourhood of the identity (0, 0, 0) of
HW(R) and by considering the series w1 = hw(R), w2 = [w1, w1]−, w3 = [w1, w2]−, . . . ,

where [A,B]− refers here to the set of commutators [α, β]− with α ∈ A and β ∈ B. �

The connection with the Heisenberg commutation relations is clearly emphasized by (7).
This constitutes a partial justification for calling HW(R) the Heisenberg–Weyl group on R.
The Lie algebra hw(R) was derived from a matrix group [4] and studied at length from the point
of view of quantum mechanics [5]. This algebra admits infinite-dimensional representations
by Hermitian matrices. In particular, we have the infinite-dimensional harmonic oscillator
representation which is associated with the operator realization H = Hho := h̄1,Q = Qho :=
x and P = Pho := h̄

i
∂
∂x

, where h̄ is the rationalized Planck constant. On the other side, we
may expect to have finite-dimensional representations of hw(R) at the price to abandon the
Hermitian character of the representation matrices.

As an example, we have the three-dimensional representation of hw(R) defined by
H = H3,Q = Q3 and P = P3 with

H3 :=
⎛
⎝0 0 0

0 0 0
i 0 0

⎞
⎠ Q3 :=

⎛
⎝0 0 0

i 0 0
0 0 0

⎞
⎠ P3 :=

⎛
⎝0 0 0

0 0 0
0 −i 0

⎞
⎠ . (8)

We can look for the matrix Lie group which corresponds to the Lie algebra spanned by the set
{H3,Q3, P3}. This yields proposition 3.

Proposition 3. The exponentiation

M(x, y, z) := exp[i(xH3 + yQ3 + zP3)] (9)

leads to

M(x, y, z) =

⎛
⎜⎝

1 0 0
−y 1 0

−x − 1
2yz z 1

⎞
⎟⎠ . (10)

The matrices M(x, y, z) satisfy the composition law

M(x, y, z)M(x ′, y ′, z′) = M
(
x + x ′ + 1

2zy ′ − 1
2yz′, y + y ′, z + z′) (11)

so that the set S ′ := {M(x, y, z) : x, y, z ∈ R} endowed with the law (11) is a group
isomorphic to HW(R).

Proof. A simple expansion of (9) where H3,Q3 and P3 are given by (8) yields (10). The
isomorphism follows from the bijection S → S ′ : (x, y, z) �→ M

(−x − 1
2yz,−y,−z

)
.
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Note that the matrix form (10) corresponds to two other sets {H±,Q±,P±} of infinitesimal
generators of HW(R), namely

H± = ±i
∂

∂x
Q± = ±i

(
∂

∂y
∓ 1

2
z

∂

∂x

)
P± = ±i

(
∂

∂z
± 1

2
y

∂

∂x

)
(12)

which satisfies (7) with H = H±,Q = Q± and P = P± (cf [4, 5]). �

3. The Pauli group

3.1. The abstract Pauli group

3.1.1. The group Pd . We shall be concerned in this section with a discretization of the
Heisenberg–Weyl group HW(R). A trivial discretization of HW(R) can be obtained by
replacing the field R by the infinite ring Z. This leads to an infinite-dimensional discrete
group HW(Z). A further possibility is to replace R by the finite ring Zd ≡ Z/dZ where
d is arbitrary in N\{0, 1}. (In the case where d is a prime p or a power of a prime pe with
e ∈ N\{0, 1}, the finite ring Z/dZ can be replaced by the Galois field Fp or Fpe .) This yields
a finite group HW(Zd) which can be described by the following result.

Proposition 4. The set

Sd := {(a, b, c) : a, b, c ∈ Zd} (13)

with the internal composition law Sd × Sd → Sd defined through

(a, b, c)(a′, b′, c′) := (a + a′ − cb′, b + b′, c + c′) (14)

(where from now on the addition is understood modulo d) is a finite group of order d3. This
non-Abelian group HW(Zd), noted Pd for short, is nilpotent (hence solvable) with a nilpotency
class equal to 2.

Proof. The proof of proposition 4 is elementary. Note simply that we have the canonical
decomposition

(a, b, c) = (a, 0, 0)(0, b, 0)(0, 0, c) (15)

for any element (a, b, c) of Pd and that two elements (a, b, c) and (a′, b′, c′) of Pd commute
if and only if cb′ − bc′ = 0 (mod d). �

We call the abstract group Pd the (generalized) Pauli group in d dimensions. At this stage,
we can give the main reason for associating Heisenberg, Pauli and Weyl in the title of the
present paper. As a point of fact, the discretization of the group HW(R), a group associated
with the Heisenberg commutation relations, via the replacement R → Z/dZ gives rise to the
group Pd , a group which can be realized in terms of generalized Pauli matrices, which in turn
can be constructed in terms of Weyl pairs (see below).

3.1.2. Some subgroups of Pd . Among the subgroups of Pd , we can mention proper subgroups
of order d and d2 (there are no other proper subgroups if d is a prime integer). We simply list
below the subsets of Sd , which together with the law (14), provide us with some important
subgroups of Pd .

• The set {(a, 0, 0) : a ∈ Zd} gives an invariant Abelian subgroup of Pd of order d
isomorphic to the cyclic group Zd . In fact, this subgroup is the centrum Z(Pd) of Pd and
Pd/Z(Pd) is isomorphic to Zd ⊗ Zd .

• The set {(0, b, 0) : b ∈ Zd} gives an Abelian subgroup of Pd of order d isomorphic to Zd .

5
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• Similarly, the set {(0, 0, c) : c ∈ Zd} gives also an Abelian subgroup of Pd of order d
isomorphic to Zd .

• The sets {(a, b, 0) : a, b ∈ Zd} and {(a, 0, c) : a, c ∈ Zd} give two invariant Abelian
subgroups of Pd of order d2 isomorphic to Zd ⊗ Zd .

• Finally, the set {(a, b, b) : a, b ∈ Zd} give an invariant Abelian subgroup of Pd of
order d2.

3.1.3. Conjugacy classes of Pd . The conjugacy classes of Pd readily follow from

(a′, b′, c′)(a, b, c)(a′, b′, c′)−1 = (a + cb′ − bc′, b, c) (16)

with addition modulo d. This can be precised by the following result.

Proposition 5. The group Pd has d(d + 1) − 1 conjugacy classes: d classes containing each
one element and d2 − 1 classes containing each d elements.

Proof. It can be checked that the class C(a,0,0) of (a, 0, 0) is C(a,0,0) = {(a, 0, 0)}; therefore,
there are d classes with one element. Furthermore, the class C(a,b,c) of (a, b, c), with the case
b = c = 0 excluded, is C(a,b,c) = {(a′, b, c) : a′ ∈ Zd}; this yields d2 − 1 classes with d
elements. We note that the group Pd is not ambivalent in general. �

The case d = 2 is very special since the group P2 of order 8 is ambivalent like the group
Q of ordinary quaternions, another group of order 8. Not all the subgroups of P2 are invariant.
Therefore, the group P2 is not isomorphic to Q (for which all subgroups are invariant). Indeed,
it can be proved that P2 is isomorphic to the group of hyperbolic quaternions associated with the
Cayley–Dickson algebra A(c1, c2) with (c1, c2) �= (−1,−1) defined in [44]. In this respect,
the Pauli group P2 defined in this work differs from the Pauli group in d = 2 dimensions
considered by some authors, a group isomorphic to the group Q of ordinary quaternions. Let
P ′

2 be this latter Pauli group. It consists of the elements σ := ±σ0,±iσx,±iσy,±iσz (where
σ0 is the 2 × 2 unit matrix). Let us also mention that an extension of the group P ′

2 is used
in quantum computation [45] (see also [33, 42]). This extension, say P ′′

2 , is obtained from a
doubling process: the group P ′′

2 consists of the elements of the set {σ, iσ : σ ∈ P ′
2}. Thus,

the conjugation classes and the irreducible representation classes of P ′′
2 trivially follow from

those of P ′
2.

3.1.4. Irreducible representations of Pd . The duality between conjugacy classes and classes
of irreducible representations leads to the following result.

Proposition 6. The group Pd has d(d + 1) − 1 classes of irreducible representations: d2

classes of dimension 1 and d − 1 classes of dimension d.

Proof. It is sufficient to apply the Burnside–Wedderburn theorem. �

As a corollary of propositions 5 and 6, the difference between the order of Pd and its
number of classes (conjugacy classes or irreducible representation classes) is odd if d = 2k

(k ∈ N
∗), or a multiple of 16 if d = 4k + 3 (k ∈ N) or a multiple of 32 if d = 4k + 1 (k ∈ N

∗).
(For an arbitrary finite group of odd order, the difference is a multiple of 16.) Furthermore,
the number of elements of Pd which commute with a given element (a, b, c) of Pd is d3 or
a multiple of d2 according to whether the order of the conjugation class containing (a, b, c)

is 1 or d; see [41] for a more elaborated result, in the form of a universal formula, and its
interpretation in terms of the fine structure of the projective line defined over the modular ring
Zd . Note that propositions 5 and 6 are in agreement with the results obtained [10] in the case

6
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where d is a power of a prime integer corresponding to the replacement of the ring Zd by the
Galois field Fd .

3.1.5. A Lie algebra associated with Pd . We close the study of the abstract group Pd with
a result devoted to the association of Pd with a Lie algebra of dimension d3. Let us consider
the group algebra (or Frobenius algebra) F(Pd) of the generalized Pauli group Pd . Such
an algebra is an associative algebra over the field C. By applying the process developed by
Gamba [46], we can construct from F(Pd) a Lie algebra, which we shall denote as pd , by
taking

〈(a, b, c), (a′, b′, c′)〉 := (a + a′ − cb′, b + b′, c + c′) − (a + a′ − bc′, b + b′, c + c′) (17)

for the Lie bracket of (a, b, c) and (a′, b′, c′). (The right-hand side of (17) is defined in F(Pd).)
The set Sd constitutes a basis both for the Frobenius algebra F(Pd) and the Lie algebra pd (Sd

is a Chevalley basis for pd ). As a further result, we have the following proposition.

Proposition 7. The Lie algebra pd of dimension d3, associated with the finite group Pd of
order d3, is not semi-simple. It can be decomposed as the direct sum

pd =
d2⊕
1

u(1)

d−1⊕
1

u(d), (18)

which contains d2 Lie algebras isomorphic to u(1) and d −1 Lie algebras isomorphic to u(d).

Proof. The proof can be achieved by passing from the Chevalley basis of pd , inherent to (17),
to the basis generated by the idempotent (or projection) operators and nilpotent (or ladder)
operators, defined in F(Pd), associated with the classes of irreducible representations of Pd .
Equation (18) is reminiscent of the fact that Pd has d2 irreducible representation classes of
dimension 1 and d − 1 irreducible representation classes of dimension d. �

3.2. A realization of the Pauli group

3.2.1. Polar decomposition of SU(2). Let E(2j + 1), with 2j ∈ N, be a (2j + 1)-
dimensional Hilbert space of constant angular momentum j . Such a space is spanned by
the set {|j,m〉 : m = j, j − 1, . . . ,−j}, where |j,m〉 is an eigenstate of the square j 2 and the
z-component jz of a generalized angular momentum [47]. The state vectors |j,m〉 are taken
in an orthonormalized form, i.e., the inner product 〈j,m|j ′,m′〉 is equal to δm,m′ .

Following the approach of [48], we define the linear operator vra via

vra|j,m〉 = (1 − δm,j )q
(j−m)a|j,m + 1〉 + δm,j ei2πjr |j,−j 〉, (19)

where

r ∈ R a ∈ R q = exp

(
2π i

2j + 1

)
. (20)

The matrix Vra of the operator vra in the spherical basis

bs := {|j, j 〉, |j, j − 1〉, . . . , |j,−j 〉} (21)

reads

Vra =

⎛
⎜⎜⎜⎜⎜⎝

0 qa 0 · · · 0
0 0 q2a · · · 0
...

...
... · · · ...

0 0 0 · · · q2ja

ei2πjr 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠

. (22)

7
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The matrix Vra constitutes a generalization of the matrix Va introduced in [49] (see also
[40]).

The shift operator vra takes its origin in the study of the Lie algebra of SU(2) in a
nonstandard basis with the help of two quon algebras describing q-deformed oscillators [50].
The operator vra is unitary. Furthermore, it is cyclic in the sense that

(vra)
2j+1 = ei2πj (a+r)I, (23)

where I is the identity. The eigenvalues and eigenvectors of vra are given by the following
result.

Proposition 8. The spectrum of the operator vra is nondegenerate. For fixed j, r and a, it
follows from

vra|jα; ra〉 = qj(a+r)−α|jα; ra〉, (24)

where

|jα; ra〉 = 1√
2j + 1

j∑
m=−j

q(j+m)(j−m+1)a/2−jmr+(j+m)α|j,m〉 (25)

for α = 0, 1, . . . , 2j .

A second linear operator is necessary to define a polar decomposition of SU(2). Let us
introduce the Hermitian operator h through

h|j,m〉 =
√

(j + m)(j − m + 1)|j,m〉. (26)

Then, it is a simple matter of calculation to show that the three operators

j+ = hvra j− = v†
rah jz = 1

2

(
h2 − v†

rah
2vra

)
(27)

satisfy the ladder equations

j+|j,m〉 = q+(j−m+s−1/2)a
√

(j − m)(j + m + 1)|j,m + 1〉 (28)

j−|j,m〉 = q−(j−m+s+1/2)a
√

(j + m)(j − m + 1)|j,m − 1〉 (29)

and the eigenvalue equation

jz|j,m〉 = m|j,m〉 (30)

where s = 1/2. (Note that there is one misprint in the corresponding relations of [40].)
Therefore, we have the following result.

Proposition 9. The operators j+, j− and jz satisfy the commutation relations

[jz, j+] = +j+ [jz, j−] = −j− [j+, j−] = 2jz (31)

and thus span the Lie algebra of SU(2) over the complex field.

The latter result does not depend on the parameters r and a. However, the action of
j+ and j− on |j,m〉 on the space E(2j + 1) depends on a (an a priori real parameter to be
restricted to integer values in what follows); the usual Condon and Shortley phase convention
used in spectroscopy corresponds to a = 0. The writing of the ladder operators j+ and j−
in terms of h and vra constitutes a two-parameter polar decomposition of the Lie algebra of
SU(1, 1) (or SU(2) over the complex field). This decomposition is an alternative to the polar
decompositions obtained independently in [51, 52].

8
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3.2.2. Weyl pairs. The linear operator x := v00 such that (cf (19))

x|j,m〉 = (1 − δm,j )|j,m + 1〉 + δm,j |j,−j 〉 (32)

has the spectrum (1, q, . . . , q2j ) on E(2j + 1). Therefore, the matrix X := V00 of x on the
basis bs is unitarily equivalent to

Z := diag(1, q, . . . , q2j ). (33)

The linear operator z corresponding to the matrix Z can be defined by

z|j,m〉 = qj−m|j,m〉. (34)

The two isospectral operators x (a cyclic shift operator) and z (a cyclic phase operator) are
unitary and constitute a pair of Weyl (x, z) since they obey the q-commutation relation

xz − qzx = 0 (35)

(or XZ − qZX = 0 in matrix form). These two operators are connected via

x = f †zf ⇔ z = f xf †, (36)

where f is the Fourier operator such that

f |j,m〉 = 1√
2j + 1

j∑
m′=−j

q−(j−m)(j−m′)|j,m′〉. (37)

The operator f is unitary and satisfies

f 4 = 1 (38)

(see [52] for a general treatment of Fourier operators on finite-dimensional Hilbert spaces).
Let F be the matrix of the linear operator f in the basis bs . Indeed, F is a circulant matrix.
Note that the reduction of the endomorphism associated with the matrix X yields the matrix
Z. In other words, the diagonalization of X can be achieved with the help of the matrix F via
Z = FXF†.

We conclude that the polar decomposition of SU(2) described in section 3.2.1 provides us
with an alternative derivation of the Weyl pair (X,Z). Of course, other pairs of Weyl (Vra, Z),
corresponding to (vra, z) with the property vraz − qzvra = 0, can be derived by replacing v00

by vra . Note that vra = vr0z
a .

3.2.3. Weyl pairs and Pauli group. Let us define the d3 operators

wabc := qaxbzc a, b, c ∈ Zd . (39)

The action of wabc on the Hilbert space E(2j + 1) is described by

wabc|j,m〉 = qa+(j−m)c|j,m + b〉, (40)

where m + b is understood modulo 2j + 1. The operators wabc are unitary and satisfy

TrE(2j+1)

(
w

†
abcwa′b′c′

) = qa′−adδb,b′δc,c′ (41)

with d := 2j + 1. In addition, we have the following central result.

Proposition 10. The set Wd := {wabc : a, b, c ∈ Zd} endowed with the multiplication of
operators is a group isomorphic to the Pauli group Pd . Thus, the group Pd is isomorphic to a
subgroup of U(d) for d even or SU(d) for d odd.

Proof. The proof is immediate: it is sufficient to consider the bijection Wd → Sd : wabc �→
(a, b, c), to use repeatedly (35) or (40), and to note that the matrix of wabc in the basis bs

9
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belongs to U(d) for d even and to SU(d) for d odd. As a consequence, the Lie bracket
〈(a, b, c), (a′, b′, c′)〉, see (17), corresponds to the commutator [wabc, wa′b′c′ ]− so that the Lie
algebra pd associated with the finite group Pd corresponds to the commutation relations

[wabc, wa′b′c′]− = wαβγ − wα′β ′γ ′ (42)

with α = a + a′ − cb′, β = b + b′, γ = c + c′, α′ = α + cb′ − bc′, β ′ = β and γ ′ = γ . �

3.2.4. Weyl pairs and infinite-dimensional Lie algebra. We close this section by mentioning
another interest of Weyl pairs (vra, z). By defining the operators

tm = q
1
2 m1m2vm1

ra zm2 m = (m1,m2) ∈ N
∗2 (43)

we easily obtain the following result.

Proposition 11. The commutator of the operators tm and tn reads

[tm, tn]− = 2i sin

(
π

2j + 1
m ∧ n

)
tm+n, (44)

where

m ∧ n = m1n2 − m2n1 m + n = (m1 + n1,m2 + n2). (45)

Therefore, the linear operators tm span an infinite-dimensional Lie algebra.

The so-obtained Lie algebra is isomorphic to the algebra introduced in [53]. The latter
result parallels those derived, on the one hand, from a study of k-fermions and of the Dirac
quantum phase operator through a q-deformation of the harmonic oscillator [54] and, on the
other hand, from an investigation of correlation measure for finite quantum systems [55].

3.3. Mutually unbiased bases

We now briefly establish contact with quantum information. For this purpose, let us introduce
the notation

k := j − m |k〉 := |j,m〉 d := 2j + 1. (46)

Thus, the angular momentum basis {|j, j 〉, |j, j − 1〉, . . . , |j,−j 〉} of the finite-dimensional
Hilbert space E(2j + 1) reads {|0〉, |1〉, . . . , |d − 1〉}. Let us note

Bd := {|k〉 : k = 0, 1, . . . , d − 1} (47)

the latter orthonormal basis, known as the computational basis in quantum information and
quantum computation. From now on, the real number a occurring in (25) shall be restricted
to take the values a = 0, 1, . . . , d − 1.

From equation (25), we can write the eigenvectors |aα〉 := |jα; 0a〉 of the operator v0a

as

|aα〉 = 1√
d

d−1∑
k=0

q(d−k−1)(k+1)a/2−(k+1)α|k〉, (48)

where, for fixed a (a = 0, 1, . . . , d − 1), the index α takes the values 0, 1, . . . , d − 1. Note
that

B0a := {|aα〉 : α = 0, 1, . . . , d − 1} (49)

is another orthonormal basis of E(d).

10
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Proposition 8 can be transcribed in matrix form by using the generators Ex,y of GL(d, C)

(see also [40] where a different normalization is used). The d ×d matrix Ex,y (with x, y ∈ Zd )
is defined by its matrix elements

(Ex,y)kl = δk,xδl,y k, l ∈ Zd . (50)

Therefore, the matrix V0a of the operator v0a in the computational basis Bd is

V0a = Ed−1,0 +
d−2∑
k=0

q(k+1)aEk,k+1. (51)

The eigenvectors ϕ(aα) of the matrix V0a are expressible in terms of the d × 1 column vectors
ex (with x ∈ Zd ) defined via

(ex)k0 = δk,x k ∈ Zd . (52)

In fact, we can check that

ϕ(aα) = 1√
d

d−1∑
k=0

q(d−k−1)(k+1)a/2−(k+1)αek (53)

satisfies the eigenvalue equation

V0aϕ(aα) = q(d−1)a/2−αϕ(aα). (54)

Furthermore, the d × d matrix

Ha :=
d−1∑
α=0

d−1∑
k=0

q(d−k−1)(k+1)a/2−(k+1)αEk,α (55)

reduces the endomorphism associated with V0a . In other words, we have

H †
aV0aHa = q(d−1)a/2d

d−1∑
α=0

q−αEα,α. (56)

Note that Ha is a generalized Hadamard matrix in the sense that

H †
aHa = dI (57)

and the modulus of any element of Ha is unity. Observe that the Fourier matrix F can be
written as

F = (H0S)† S := 1√
d

d−1∑
β=0

Eβ,d−β, (58)

where S acts as a permutation matrix normalized by 1√
d

.
As an application of (48) or (53) to mutually unbiased bases, we have the following result

(see also [40, 49]).

Proposition 12. In the case where d = p is a prime integer, the bases B0a for a = 0,

1, . . . , p − 1 together with the computational basis Bd constitute a complete set of p + 1
mutually unbiased bases.

Proof. According to the definition of mutually unbiased bases [56], we need to prove that

|〈k|aα〉| = 1√
p

(59)

11
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and

|〈aα|bβ〉| = δα,βδa,b +
1√
p

(1 − δa,b) (60)

for any value of a, b, α, β and k in Zd . Equation (59) simply follows from (48) and
equation (60) was proved in [40] by making use of generalized quadratic Gauss sums. �

The interest of (48) or (53) with d = p, p prime (including the case p = 2), is that the p2

vectors corresponding to the p mutually unbiased bases besides the computational basis are
obtainable from one single formula that is easily codable on a computer (the single formula
corresponds to the diagonalization of only one matrix, namely the matrix V0a where a can
take the values a = 0, 1, . . . , p − 1). In matrix form, the p mutually unbiased bases besides
the computational basis are given by the columns of the Hadamard matrices matrices Ha

(a = 0, 1, . . . , p − 1).
Going back to d arbitrary, we can check that the bases B00, B01 and Bd constitute a set of

three mutually unbiased bases. Therefore, we recover a well-known result according to which
there exists a minimum of three mutually unbiased bases when d is not a prime power.

4. Weyl pairs and unitary group

In this section, we shall focus our attention on one of the u(d) subalgebras of pd . Such a
subalgebra can be constructed from a remarkable subset of {wabc : a, b, c ∈ Zd}. This subset
is made of generalized Pauli operators. It is generated by the Weyl pair (x, z) or (X,Z) in
matrix form.

4.1. Generalized Pauli operators

Following the work by Patera and Zassenhaus [9], let us define the operators

uab := w0ab = xazb a, b ∈ Zd . (61)

The operators uab are unitary. Note that the matrices XaZb of the operators uab in the basis
bs belong to the unitary group U(d) for d even or to the special unitary group SU(d) for d
odd. The d2 operators uab shall be referred to as generalized Pauli operators in dimension
d. It should be mentioned that matrices corresponding to operators of type (61) were first
introduced long-time ago by Sylvester [57] in order to solve the matrix equation PX = XQ;
in addition, such matrices were used by Morris [58] to define generalized Clifford algebras
in connection with quaternion algebras and division rings. The operators uab satisfy the two
following properties which are direct consequences of (41) and (42).

Proposition 13. The set {uab : a, b ∈ Zd} is an orthogonal set with respect to the Hilbert–
Schmidt inner product. More precisely,

TrE(2j+1)

(
u
†
abua′b′

) = dδa,a′δb,b′ , (62)

where the trace has to be taken on the d-dimensional space E(2j + 1) with d := 2j + 1.

Proposition 14. The commutator [uab, ua′b′ ]− and the anti-commutator [uab, ua′b′ ]+ of uab

and ua′b′ are given by

[uab, ua′b′ ]∓ = (q−ba′ ∓ q−ab′
)ua′′b′′ a′′ := a + a′ b′′ := b + b′. (63)

Consequently, [uab, ua′b′ ]− = 0 if and only if ab′ − ba′ = 0 (mod d) and [uab, ua′b′ ]+ = 0
if and only if ab′ − ba′ = (1/2)d (mod d). Therefore, all anti-commutators [uab, ua′b′ ]+ are
different from 0 if d is an odd integer.

12
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The d2 pairwise orthogonal operators uab can be used as a basis of the Hilbert space
C

d2
(with the Hilbert–Schmidt scalar product) of the operators acting on the Hilbert space

C
d (with the usual scalar product). In matrix form, they give generalized Pauli matrices in

(2j + 1) × (2j + 1) dimensions, the spin angular momentum j = 1/2 corresponding to the
ordinary Pauli matrices.

Example 1. j = 1/2 ⇒ q = −1 and d = 2. The matrices of the four operators uab with a,

b = 0, 1 are

I = X0Z0 =
(

1 0
0 1

)
X = X1Z0 =

(
0 1
1 0

)
(64)

Z = X0Z1 =
(

1 0
0 −1

)
Y := X1Z1 =

(
0 −1
1 0

)
. (65)

In terms of the usual (Hermitian and unitary) Pauli matrices σx, σy and σz, we have
X = σx, Y = −iσy, Z = σz. Note that a normalization for the Pauli matrices different from
the conventional one is also used in [9]. The group-theoretical approaches developed in [9] and
in the present paper lead to Pauli matrices in dimension 2 × 2 that differ from the usual Pauli
matrices. This is the price one has to pay in order to get a systematic generalization of Pauli
matrices in arbitrary dimension (see also [9, 23]). It should be observed that the commutation
and anti-commutation relations given by (63) with d = 2 correspond to the well-known
commutation and anti-commutation relations for the usual Pauli matrices (transcribed in the
normalization X1Z0 = σx,X

1Z1 = −iσy,X
0Z1 = σz).

Example 2. j = 1 ⇒ q = exp(2π i/3) and d = 3. The matrices of the nine operators uab

with a, b = 0, 1, 2, namely

X0Z0 = I X1Z0 = X X2Z0 = X2 X0Z1 = Z X0Z2 = Z2 (66)

X1Z1 = XZ X2Z2 X2Z1 = X2Z X1Z2 = XZ2 (67)

are

I =
⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ X =

⎛
⎝0 1 0

0 0 1
1 0 0

⎞
⎠ X2 =

⎛
⎝0 0 1

1 0 0
0 1 0

⎞
⎠ (68)

Z =
⎛
⎝1 0 0

0 q 0
0 0 q2

⎞
⎠ Z2 =

⎛
⎝1 0 0

0 q2 0
0 0 q

⎞
⎠ XZ =

⎛
⎝0 q 0

0 0 q2

1 0 0

⎞
⎠ (69)

X2Z2 =
⎛
⎝0 0 q

1 0 0
0 q2 0

⎞
⎠ X2Z =

⎛
⎝0 0 q2

1 0 0
0 q 0

⎞
⎠ XZ2 =

⎛
⎝0 q2 0

0 0 q

1 0 0

⎞
⎠ . (70)

These matrices differ from the Gell-Mann matrices [16] used in elementary particle physics.
They constitute a natural extension of the Pauli matrices in dimension 3 × 3 (see also
[9, 23]).
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4.2. The unitary group in the generalized Pauli basis

From proposition 14, it is clear that the set {uab : a, b = 0, 1, . . . , d − 1} can be used as a
set of generators of the Lie group U(d). Thus the generalized Pauli matrices X and Z form
an integrity basis for the Lie algebra of U(d). This can be precised by the two propositions
below.

Proposition 15. The set {XaZb : a, b = 0, 1, . . . , d − 1} form a basis for the Lie algebra
u(d) of the unitary group U(d) for d arbitrary. The Lie brackets of u(d) in such a basis (that
we denote as the Pauli basis) are given by

[XaZb,Xa′
Zb′

]− =
∑
a′′b′′

(ab, a′b′; a′′b′′)Xa′′
Zb′′

, (71)

where the structure constants (ab, a′b′; a′′b′′) read

(ab, a′b′; a′′b′′) = δ(a′′, a + a′)δ(b′′, b + b′)(q−ba′ − q−ab′
) (72)

with a, b, a′, b′ = 0, 1, . . . , d − 1 (mod d). The structure constants (ab, a′b′; a′′b′′) with
a′′ = a + a′ and b′′ = b + b′ are cyclotomic polynomials associated with d. They vanish for
ab′ − ba′ = 0 (mod d).

Proposition 16. In the case where d = p is a prime integer, the Lie algebra su(p) of the
special unitary group SU(p) can be decomposed into a direct sum of p+1 Abelian subalgebras
of dimension p − 1. More precisely

su(p) = v0 ⊕ v1 ⊕ · · · ⊕ vp, (73)

where each of the p + 1 subalgebras v0, v1, . . . , vp is a Cartan subalgebra generated by a set
of p − 1 commuting matrices. The various sets are

V1 := {X1Z0, X2Z0, . . . , Xp−1Z0} (74)

V2 := {X1Z1, X2Z2, . . . , Xp−1Zp−1} (75)

V3 := {X1Z2, X2Z4, . . . , Xp−1Zp−2} (76)

... (77)

Vp−1 := {X1Zp−2, X2Zp−4, . . . , Xp−1Z2} (78)

Vp := {X1Zp−1, X2Zp−2, . . . , Xp−1Z1} (79)

and

V0 := {X0Z1, X0Z2, . . . , X0Zp−1} (80)

for v1, v2, . . . , vp and v0, respectively.

Proof. The proof of proposition 15 is straightforward: it follows from (62) and (63). For
proposition 16, we need to pass from u(p) to its subalgebra su(p). A basis for the Lie
algebra su(p) of SU(p) is provided with the set {XaZb : a, b = 0, 1, . . . , p − 1}\{X0Z0}.
Then, in order to prove proposition 16, it suffices to verify that the p + 1 sets (or classes)
V0,V1, · · · ,Vp−1, and Z constitute a partition of {XaZb : a, b = 0, 1, . . . , p − 1}\{X0Z0}
and that the p − 1 operators in each set commute one with each other. Proposition 16 takes its
origin in a remark [48] according to which the rank of su(p) is p − 1 so that the case of p + 1
sets containing p−1 commuting operators occurs as a limiting case. The decomposition (73),
also valid for sl(p, C), was first derived in [9] in connection with the determination of finest
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gradings of Lie algebras of type Ap−1. It is little known that a decomposition of type (73) was
conjectured almost three decades ago [59] for the more general case where p is replaced by a
prime power (see also [60]). �

Example 3. For the purpose of clarifying the production process of the sets Vi (for
i = 0, 1, . . . , p), let us consider the case p = 7 ⇔ j = 3). Equations (74)–(80) give

V0 = {(01), (02), (03), (04), (05), (06)} (81)

V1 = {(10), (20), (30), (40), (50), (60)} (82)

V2 = {(11), (22), (33), (44), (55), (66)} (83)

V3 = {(12), (24), (36), (41), (53), (65)} (84)

V4 = {(13), (26), (32), (45), (51), (64)} (85)

V5 = {(14), (21), (35), (42), (56), (63)} (86)

V6 = {(15), (23), (31), (46), (54), (62)} (87)

V7 = {(16), (25), (34), (43), (52), (61)}, (88)

where (ab) is used as an abbreviation of XaZb.

At this stage, it should be stressed that decompositions of type (73)–(80) are especially
useful for the construction of mutually unbiased bases [40, 56]. Along this vein, the common
eigenvectors of each of the p+1 subalgebras v0, v1, . . . , vp give rise to p+1 mutually unbiased
bases. Unfortunately, finding a general formula for the Lie brackets of each pair of the Cartan
subalgebras is a difficult problem for which we have no answer.

Counter example 1. For d = 4 ⇔ j = 3/2 (⇒ a, b = 0, 1, 2, 3), proposition 15 is valid but
proposition 16 does not apply. Indeed, the 16 unitary operators uab corresponding to

ab = 01, 02, 03, 10, 20, 30, 11, 22, 33, 12, 13, 21, 23, 31, 32, 00 (89)

are linearly independent and span the Lie algebra of U(4) but they give only three disjoint
sets, namely {(01), (02), (03)}, {(10), (20), (30)} and {(11), (22), (33)}, containing each three
commuting operators, where here again (ab) stands for XaZb. However, it is not possible
to partition the set (89) in order to get a decomposition similar to (73). Nevertheless, it is
possible to find another basis of u(4) which can be partitioned in a way yielding a decompostion
similar to (73). This can be achieved by working with tensorial products of the matrices XaZb

corresponding to p = 2. In this respect, let us consider the product ua1b1 ⊗ ua2b2 , where uaibi

with i = 1, 2 are Pauli operators for p = 2. Then, by using the abbreviation (a1b1a2b2) for
ua1b1 ⊗ ua2b2 or Xa1Zb1 ⊗ Xa2Zb2 , it can be checked that the five disjoint sets

{(1011), (1101), (0110)} (90)

{(1001), (0111), (1110)} (91)

{(1010), (1000), (0010)} (92)

{(1111), (1100), (0011)} (93)

{(0101), (0100), (0001)} (94)

consist each of three commuting unitary operators and that the Lie algebra su(4) is spanned by
the union of the five sets. It is to be emphasized that the 15 operators (90)–(94) are underlaid

15



J. Phys. A: Math. Theor. 41 (2008) 375302 M R Kibler

by the geometry of the generalized quadrangle of order 2 [30]. In this geometry, the five sets
given by (90)–(94) correspond to a spread of this quadrangle, i.e., to a set of five pairwise
skew lines [30].

The considerations of counter example 1 can be generalized in the case d := d1d2 · · · de, e

being an integer greater or equal to 2. Let us define

uAB := ua1b1 ⊗ ua2b2 ⊗ · · · ⊗ uaebe
A := a1, a2, . . . , ae B := b1, b2, . . . , be, (95)

where ua1b1 , ua2b2 , . . . , uaebe
are generalized Pauli operators corresponding to the dimensions

d1, d2, . . . , de respectively. (The operators uAB are elements of the group Pd1 ⊗Pd2 ⊗· · ·⊗Pde
.

We follow [9] by calling the operators uAB generalized Dirac operators since the ordinary Dirac
operators correspond to P2 ⊗P2.) In addition, let q1, q2, . . . , qe be the q-factor associated with
d1, d2, . . . , de respectively (qj := exp(2π i/dj )). Then, propositions 13–15 can be generalized
as follows.

Proposition 17. The operators uAB are unitary and satisfy the orthogonality relation

TrE(d1d2···de)

(
u
†
ABuA′B ′

) = d1d2 · · · deδA,A′δB,B ′ , (96)

where

δA,A′ := δa1,a
′
1
δa2,a

′
2
· · · δae,a′

e
δB,B ′ := δb1,b

′
1
δb2,b

′
2
· · · δbe,b′

e
. (97)

The commutator [uAB, uA′B ′]− and the anti-commutator [uAB, uA′B ′]+ of uAB and uA′B ′ are
given by

[uAB, uA′B ′]∓ =
⎛
⎝ e∏

j=1

q
−bj a

′
j

j ∓
e∏

j=1

q
−aj b

′
j

j

⎞
⎠ uA′′B ′′ (98)

with

A′′ := a1 + a′
1, a2 + a′

2, . . . , ae + a′
e B ′′ := b1 + b′

1, b2 + b′
2, . . . , be + b′

e. (99)

The set
{
uAB : A,B ∈ Zd1 ⊗ Zd2 ⊗ · · · ⊗ Zde

}
of the d2

1d2
2 · · · d2

e unitary operators uAB form
a basis for the Lie algebra u(d1d2 · · · de) of the group U(d1d2 · · · de). In the special case
where d1 = d2 = · · · = de = p with p a prime integer (or equivalently d = pe), we have
[uAB, uA′B ′]− = 0 if and only if

e∑
j=1

ajb
′
j − bja

′
j = 0 (mod p) (100)

and [uAB, uA′B ′]+ = 0 if and only if
e∑

j=1

ajb
′
j − bja

′
j = 1

2
p (mod p) (101)

so that there are vanishing anti-commutators only if p = 2. For d = pe, there exists a
decomposition of the set

{
uAB : A,B ∈ Z

⊗e
p

}∖{I } that corresponds to a decomposition of the
Lie algebra su(pe) into pe + 1 Abelian subalgebras of dimension pe − 1.

Proof. The proof of (96)–(101) is based on repeated application of proposition 13. For
d = pe, we know from [24, 25, 33] that the set

{
uAB : A,B ∈ Z

⊗e
p

}∖{I } (consisting of
p2e − 1 unitary operators that are pairwise orthogonal), which provides a basis for su(pe),
can be partitioned into pe + 1 disjoint classes containing each pe − 1 commuting operators.
Therefore, there exists a decompostion of su(pe) into a direct sum of pe + 1 subalgebras of
dimension pe − 1. (There is a one-to-one correspondence between the pe + 1 subalgebras and
the pe + 1 mutually unbiased bases in C

pe

.) �
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5. Closing remarks

Starting from an abstract definition of the Heisenberg–Weyl group, combined with a polar
decompostion of SU(2) arising from angular momentum theory, we have analysed in a
detailed way the interelationship between Weyl pairs, generalized Pauli operators and the
generalized Pauli group. The interest of these developments for the unitary group U(d), d

arbitrary, have been underlined with a special emphasis for a decomposition of su(d) when d
is the power of a prime. We would like to close with two remarks.

In arbitrary dimension d, the number of mutually unbiased bases in C
d is less or equal to

d + 1 [24, 56]. Proposition 17 suggests the following remark. To prove that the number of
mutually unbiased bases in C

d is d + 1 for d arbitrary amounts to prove that it is possible to
find a decomposition of the Lie algebra su(d) into the direct sum of d + 1 Abelian subalgebras
of dimension d − 1. Therefore, if such a decomposition cannot be found, it would result that
the number of mutually unbiased bases in C

d is less than d + 1 when d is not a prime power
(cf conjectures 5.4 and 5.5 by Boykin et al [60]).

The Pauli group or discrete Heisenberg–Weyl group Pd ≡ HW(Zd) plays an important
role in deriving mutually unbiased bases in finite-dimensional Hilbert spaces. We know
that the concept of mutually unbiased bases also exists in infinite dimension [61]. In this
connection, the infinite or ordinary Heisenberg–Weyl group HW(R) might be of interest for
constructing mutually unbiased bases in infinite-dimensional Hilbert spaces.
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[51] Lévy-Leblond J-M 1973 Rev. Mex. Fı́s. 22 15

Vourdas A 1990 Phys. Rev. A 41 1653
Chaichian M and Ellinas D 1990 J. Phys. A: Math. Gen. 23 L291
Ellinas D 1991 J. Math. Phys. 32 135

[52] Vourdas A 2004 Rep. Prog. Phys. 67 267
[53] Fairlie D B, Fletcher P and Zachos C K 1990 J. Math. Phys. 31 1088
[54] Daoud M, Hassouni Y and Kibler M 1998 The k-fermions as objects interpolating between fermions and bosons

Symmetries in Science X ed B Gruber and M Ramek (New York: Plenum)
[55] Ellinas D and Floratos E G 1999 J. Phys. A: Math. Gen. 32 L63
[56] Delsarte P, Goethals J M and Seidel J J 1975 Philips Res. Rep. 30 91
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